Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7810, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086836

RESUMO

Mesospheric Green emissions from excited Oxygen in Sprite Tops (ghosts) are infrequent and faint greenish transient luminous events that remain for hundreds of milliseconds on top of certain energetic sprites. The main hypothesis to explain this glow persistence is the long lifetime of excited atomic oxygen at 557.73 nm, a well-known emission line in aurora and airglow. However, due to the lack of spectroscopic campaigns to analyse such events to date, the species involved in the process can not yet be identified. Here we report observational results showing the temporal evolution of a ghost spectrum between 500 nm and 600 nm. Besides weak -but certain- traces of excited atomic oxygen, our results show four main contributors related to the slow decay of the glow: atomic iron and nickel, molecular nitrogen and ionic molecular oxygen. Additionally, we are able to identify traces of atomic sodium, and ionic silicon, these observations being consistent with previous direct measurements of density profiles of meteoric metals in the mesosphere and lower thermosphere. This finding calls for an upgrade of current air plasma kinetic understanding under the influence of transient luminous events.

2.
Nature ; 618(7967): 967-973, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380694

RESUMO

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Assuntos
Atmosfera , Mudança Climática , Modelos Climáticos , Clima , Temperatura Baixa , Halogênios , Atmosfera/análise , Atmosfera/química , Halogênios/análise , Hidrocarbonetos Halogenados , Oceanos e Mares , Água do Mar/análise , Água do Mar/química , Mudança Climática/estatística & dados numéricos , Atividades Humanas
3.
J Quant Spectrosc Radiat Transf ; 302: 108567, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36945203

RESUMO

Objective: To conduct a proof-of-concept study of the detection of two synthetic models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using polarimetric imaging. Approach: Two SARS-CoV-2 models were prepared as engineered lentiviruses pseudotyped with the G protein of the vesicular stomatitis virus, and with the characteristic Spike protein of SARS-CoV-2. Samples were prepared in two biofluids (saline solution and artificial saliva), in four concentrations, and deposited as 5-µL droplets on a supporting plate. The angles of maximal degree of linear polarization (DLP) of light diffusely scattered from dry residues were determined using Mueller polarimetry from87 samples at 405 nm and 514 nm. A polarimetric camera was used for imaging several samples under 380-420 nm illumination at angles similar to those of maximal DLP. Per-pixel image analysis included quantification and combination of polarization feature descriptors in 475 samples. Main results: The angles (from sample surface) of maximal DLP were 3° for 405 nm and 6° for 514 nm. Similar viral particles that differed only in the characteristic spike protein of the SARS-CoV-2, their corresponding negative controls, fluids, and the sample holder were discerned at 10-degree and 15-degree configurations. Significance: Polarimetric imaging in the visible spectrum may help improve fast, non-contact detection and identification of viral particles, and/or other microbes such as tuberculosis, in multiple dry fluid samples simultaneously, particularly when combined with other imaging modalities. Further analysis including realistic concentrations of real SARS-CoV-2 viral particles in relevant human fluids is required. Polarimetric imaging under visible light may contribute to a fast, cost-effective screening of SARS-CoV-2 and other pathogens when combined with other imaging modalities.

4.
Geophys Res Lett ; 49(12): e2022GL097953, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860422

RESUMO

Mercury, a global contaminant, enters the stratosphere through convective uplift, but its chemical cycling in the stratosphere is unknown. We report the first model of stratospheric mercury chemistry based on a novel photosensitized oxidation mechanism. We find two very distinct Hg chemical regimes in the stratosphere: in the upper stratosphere, above the ozone maximum concentration, Hg0 oxidation is initiated by photosensitized reactions, followed by second-step chlorine chemistry. In the lower stratosphere, ground-state Hg0 is oxidized by thermal reactions at much slower rates. This dichotomy arises due to the coincidence of the mercury absorption at 253.7 nm with the ozone Hartley band maximum at 254 nm. We also find that stratospheric Hg oxidation, controlled by chlorine and hydroxyl radicals, is much faster than previously assumed, but moderated by efficient photo-reduction of mercury compounds. Mercury lifetime shows a steep increase from hours in the upper-middle stratosphere to years in the lower stratosphere.

5.
J Geophys Res Atmos ; 127(4): e2021JD036081, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35865333

RESUMO

We have compiled and analyzed a comprehensive data set of field observations of iodine speciation in marine aerosol. The soluble iodine content of fine aerosol (PM1) is dominated by soluble organic iodine (SOI; ∼50%) and iodide (∼30%), while the coarse fraction is dominated by iodate (∼50%), with nonnegligible amounts of iodide (∼20%). The SOI fraction shows an equatorial maximum and minima coinciding with the ocean "deserts," which suggests a link between soluble iodine speciation in aerosol and ocean productivity. Among the major aerosol ions, organic anions and non-sea-salt sulfate show positive correlations with SOI in PM1. Alkali cations are positively correlated to iodate and negatively correlated with SOI and iodide in coarse aerosol. These relationships suggest that under acidic conditions iodate is reduced to HOI, which reacts with organic matter to form SOI, a possible source of iodide. In less acidic sea-salt or dust-rich coarse aerosols, HOI oxidation to iodate and reaction with organic matter likely compete.

6.
Phys Chem Chem Phys ; 24(20): 12419-12432, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575018

RESUMO

The rate constants of many reactions currently considered to be important in the atmospheric chemistry of mercury remain to be measured in the laboratory. Here we report the first experimental determination of the rate constant of the gas-phase reaction between the HgBr radical and ozone, for which a value at room temperature of k(HgBr + O3) = (7.5 ± 0.6) × 10-11 cm3 molecule s-1 (1σ) has been obtained. The rate constants of two reduction side reactions were concurrently determined: k(HgBr + O) = (5.3 ± 0.4) × 10-11 cm3 molecule s-1 and k(HgBrO + O) = (9.1 ± 0.6) × 10-11 cm3 molecule s-1. The value of k(HgBr + O3) is slightly lower than the collision number, confirming the absence of a significant energy barrier. Considering the abundance of ozone in the troposphere, our experimental rate constant supports recent modelling results suggesting that the main atmospheric fate of HgBr is reaction with ozone to form BrHgO.

7.
J Am Chem Soc ; 144(20): 9172-9177, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576167

RESUMO

Sulfur trioxide is a critical intermediate for the sulfur cycle and the formation of sulfuric acid in the atmosphere. The traditional view is that sulfur trioxide is removed by water vapor in the troposphere. However, the concentration of water vapor decreases significantly with increasing altitude, leading to longer atmospheric lifetimes of sulfur trioxide. Here, we utilize a dual-level strategy that combines transition state theory calculated at the W2X//DF-CCSD(T)-F12b/jun'-cc-pVDZ level, with variational transition state theory with small-curvature tunneling from direct dynamics calculations at the M08-HX/MG3S level. We also report the pressure-dependent rate constants calculated using the system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK) theory. The present findings show that falloff effects in the SO3 + HONO2 reaction are pronounced below 1 bar. The SO3 + HONO2 reaction can be a potential removal reaction for SO3 in the stratosphere and for HONO2 in the troposphere, because the reaction can potentially compete well with the SO3 + 2H2O reaction between 25 and 35 km, as well as the OH + HONO2 reaction. The present findings also suggest an unexpected new product from the SO3 + HONO2 reaction, which, although very short-lived, would have broad implications for understanding the partitioning of sulfur in the stratosphere and the potential for the SO3 reaction with organic acids to generate organosulfates without the need for heterogeneous chemistry.


Assuntos
Atmosfera , Vapor , Teoria Quântica , Enxofre
8.
J Am Chem Soc ; 144(21): 9240-9253, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604404

RESUMO

Iodine chemistry is an important driver of new particle formation in the marine and polar boundary layers. There are, however, conflicting views about how iodine gas-to-particle conversion proceeds. Laboratory studies indicate that the photooxidation of iodine produces iodine oxides (IxOy), which are well-known particle precursors. By contrast, nitrate anion chemical ionization mass spectrometry (CIMS) observations in field and environmental chamber studies have been interpreted as evidence of a dominant role of iodic acid (HIO3) in iodine-driven particle formation. Here, we report flow tube laboratory experiments that solve these discrepancies by showing that both IxOy and HIO3 are involved in atmospheric new particle formation. I2Oy molecules (y = 2, 3, and 4) react with nitrate core ions to generate mass spectra similar to those obtained by CIMS, including the iodate anion. Iodine pentoxide (I2O5) produced by photolysis of higher-order IxOy is hydrolyzed, likely by the water dimer, to yield HIO3, which also contributes to the iodate anion signal. We estimate that ∼50% of the iodate anion signals observed by nitrate CIMS under atmospheric water vapor concentrations originate from I2Oy. Under such conditions, iodine-containing clusters and particles are formed by aggregation of I2Oy and HIO3, while under dry laboratory conditions, particle formation is driven exclusively by I2Oy. An updated mechanism for iodine gas-to-particle conversion is provided. Furthermore, we propose that a key iodine reservoir species such as iodine nitrate, which we observe as a product of the reaction between iodine oxides and the nitrate anion, can also be detected by CIMS in the atmosphere.


Assuntos
Iodo , Iodatos , Iodetos , Iodo/química , Nitratos , Óxidos de Nitrogênio , Óxidos/química
9.
Sci Rep ; 12(1): 2356, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181702

RESUMO

Effective testing is essential to control the coronavirus disease 2019 (COVID-19) transmission. Here we report a-proof-of-concept study on hyperspectral image analysis in the visible and near-infrared range for primary screening at the point-of-care of SARS-CoV-2. We apply spectral feature descriptors, partial least square-discriminant analysis, and artificial intelligence to extract information from optical diffuse reflectance measurements from 5 µL fluid samples at pixel, droplet, and patient levels. We discern preparations of engineered lentiviral particles pseudotyped with the spike protein of the SARS-CoV-2 from those with the G protein of the vesicular stomatitis virus in saline solution and artificial saliva. We report a quantitative analysis of 72 samples of nasopharyngeal exudate in a range of SARS-CoV-2 viral loads, and a descriptive study of another 32 fresh human saliva samples. Sensitivity for classification of exudates was 100% with peak specificity of 87.5% for discernment from PCR-negative but symptomatic cases. Proposed technology is reagent-free, fast, and scalable, and could substantially reduce the number of molecular tests currently required for COVID-19 mass screening strategies even in resource-limited settings.


Assuntos
Exsudatos e Transudatos/virologia , Programas de Rastreamento/métodos , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Testes Imediatos , Estudo de Prova de Conceito
10.
Nat Commun ; 11(1): 4521, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908140

RESUMO

Emitted from the oceans, iodine-bearing molecules are ubiquitous in the atmosphere and a source of new atmospheric aerosol particles of potentially global significance. However, its inclusion in atmospheric models is hindered by a lack of understanding of the first steps of the photochemical gas-to-particle conversion mechanism. Our laboratory results show that under a high humidity and low HOx regime, the recently proposed nucleating molecule (iodic acid, HOIO2) does not form rapidly enough, and gas-to-particle conversion proceeds by clustering of iodine oxides (IxOy), albeit at slower rates than under dryer conditions. Moreover, we show experimentally that gas-phase HOIO2 is not necessary for the formation of HOIO2-containing particles. These insights help to explain new particle formation in the relatively dry polar regions and, more generally, provide for the first time a thermochemically feasible molecular mechanism from ocean iodine emissions to atmospheric particles that is currently missing in model calculations of aerosol radiative forcing.

11.
J Am Chem Soc ; 142(28): 12467-12477, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32578419

RESUMO

Iodine is enriched in marine aerosols, particularly in coastal mid-latitude atmospheric environments, where it initiates the formation of new aerosol particles with iodic acid (HIO3) composition. However, particle formation in polluted and semipolluted locations is inhibited when the iodine monoxide radical (IO) is intercepted by NO2 to form the iodine nitrate (IONO2). The primary fate of IONO2 is believed to be, besides photolysis, uptake by aerosol surfaces, leading to particulate iodine activation. Herein we have performed Born-Oppenheimer molecular dynamics (BOMD) simulations and gas-phase quantum chemical calculations to study the iodine acids-iodine nitrate [HIOx (x = 2 and 3)-IONO2] dynamics at the air-water interface modeled by a water droplet of 191 water molecules. The results indicate that IONO2 does not react directly with these iodine acids, but forms an unusual kind of interaction with them within a few picoseconds, which is characterized as halogen bonding. The halogen bond-driven HIO3-IONO2 complex at the air-water interface undergoes deprotonation and exists as IO3--IONO2 anion, whereas the HIO2-IONO2 complex does not exhibit any proton loss to the interfacial water molecules. The gas-phase quantum chemical calculations suggest that the HIO3-IONO2 and HIO2-IONO2 complexes have appreciable stabilization energies, which are significantly enhanced upon deprotonation of iodine acids, indicating that these halogen bonds are fairly stable. These IONO2-induced halogen bonds explain the rapid loss of IONO2 to background aerosol. Moreover, they appear to work against iodide formation. Thus, they may play an important role in enhancing the amount of atmospherically nonrecyclable iodine (iodate) in marine aerosol.

12.
ACS Earth Space Chem ; 1(7): 431-441, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28959798

RESUMO

The ablation of cosmic dust particles entering the Earth's upper atmosphere produces a layer of Ca atoms around 90 km. Here, we present a set of kinetic experiments designed to understand the nature of the Ca molecular reservoirs on the underside of the layer. CaOH was produced by laser ablation of a Ca target in the fast flow tube and detected by non-resonant laser-induced fluorescence, probing the D(2Σ+) ← X(2Σ1) transition at 346.9 nm. The following rate constants were measured (at 298 K): k(CaOH + H → Ca + H2O) = (1.04 ± 0.24) × 10-10 cm3 molecule-1 s-1, k(CaOH + O → CaO + OH) < 1 × 10-11 cm3 molecule-1 s-1, and k(CaOH + O2 → O2CaOH, 1 Torr) = (5.9 ± 1.8) × 10-11 cm3 molecule-1 s-1 (uncertainty at the 2σ level of confidence). The recycling of CaOH from reaction between O2CaOH and O proceeds with an effective rate constant of keff(O2CaOH + O → CaOH + products, 298 K) = 2.8-1.2+2.0 × 10-10 cm3 molecule-1 s-1. Master equation modeling of the CaOH + O2 kinetics is used to extrapolate to mesospheric temperatures and pressures. The results suggest that the formation of O2CaOH slows the conversion of CaOH to atomic Ca via reaction with atomic H, and O2CaOH is likely to be a long-lived reservoir species on the underside of the Ca layer and a building block of meteoric smoke particles.

13.
Phys Chem Chem Phys ; 18(38): 26913-26922, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722645

RESUMO

Silicon monoxide (SiO) is a structurally complex compound exhibiting differentiated oxide-rich and silicon-rich nano-phases at length scales covering nanoclusters to the bulk. Although nano-sized and nano-segregated SiO has great technological potential (e.g. nano-silicon for optical applications) and is of enormous astronomical interest (e.g. formation of silicate cosmic dust) an accurate general description of SiO nucleation is lacking. Avoiding the deficiencies of a bulk-averaged approach typified by classical nucleation theory (CNT) we employ a bottom-up kinetic model which fully takes into account the atomistic details involved in segregation. Specifically, we derive a new low energy benchmark set of segregated (SiO)N cluster ground state candidates for N ≤ 20 and use the accurately calculated properties of these isomers to calculate SiO nucleation rates. We thus provide a state-of-the art evaluation of the range of pressure and temperature conditions for which formation of SiO will or will not proceed. Our results, which match with available experiment, reveal significant deficiencies with CNT approaches. We employ our model to shed light on controversial issue of circumstellar silicate dust formation showing that, at variance with the predictions from CNT-based calculations, pure SiO nucleation under such conditions is not viable.

14.
J Geophys Res Atmos ; 121(7): 3718-3728, 2016 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-27668138

RESUMO

Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere/lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO, SiO2, and Si+. Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si+/Fe+ ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si+ has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on their relative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.

15.
J Phys Chem A ; 119(10): 2016-25, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25647411

RESUMO

The fluorinated gases SF6 and C2F5Cl (CFC-115) are chemically inert with atmospheric lifetimes of many centuries which, combined with their strong absorption of IR radiation, results in unusually high global warming potentials. Very long lifetimes imply that mesospheric sinks could make important contributions to their atmospheric removal. In order to investigate this, the photolysis cross sections at the prominent solar Lyman-α emission line (121.6 nm), and the reaction kinetics of SF6 and CFC-115 with the neutral meteoric metal atoms Na, K, Mg, and Fe over large temperature ranges, were measured experimentally. The Na and K reactions exhibit significant non-Arrhenius behavior; quantum chemistry calculations of the potential energy surfaces for the SF6 reactions indicate that the Na and K reactions with SF6 are probably activated by vibrational excitation of the F-SF5 (v3) stretching mode. A limited set of kinetic measurements on Na + SF5CF3 are also presented. The atmospheric removal of these long-lived gases by a variety of processes is then evaluated. For SF6, the removal processes in decreasing order of importance are electron attachment, VUV photolysis, and reaction with K, Na, and H. For CFC-115, the removal processes in decreasing order of importance are reaction with O((1)D), VUV photolysis, and reaction with Na, K, and H.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(11): 2673-93, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15294259

RESUMO

The separation of overlapping absorption spectra in the context of multichannel time-resolved absorption spectroscopy and chemical kinetics is a particular case in the general problem of splitting the observed data into several linear components. Here, principal and independent components analysis are applied to kinetic data of iodine--ozone chemistry, which contains overlapping spectra of different absorbers. The objective of this work is to demonstrate a method which in spite of this overlap is able to extract separated time traces of such absorbers. These time traces are clearly a pre-requisite for any further accurate quantitative analysis. The statistical properties of data recordings obtained from flash photolysis of I(2) and O(3) have been studied to check if the requirements of the model are fulfilled. Results of separation in appropriate spectral windows displaying overlapped vibrational features are presented. Validation is made using prior information and conventional techniques.


Assuntos
Técnicas de Química Analítica , Iodo/química , Ozônio/química , Cinética , Modelos Químicos , Análise de Componente Principal , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...